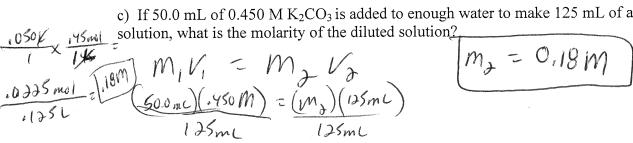


1. What is the molarity of a solution that was prepared by dissolving 14.2 g of NaNO₃ in enough water to make 350 mL of solution?

2. How many grams of water are needed to form a .010 m solution of sucrose if 2.0 moles of 200) sucrose are used?

3. What is the molality of a solution formed by dissolving 15.0 grams of glucose (molar mass = 180.18 g/mol) in 600.0 grams of water?

4. How many grams of NaBr would be needed to prepare 700 ml of 0.230 M NaBr solution?


$$\frac{.700 \text{ K}}{1 \text{ K}} \times \frac{.330 \text{ mol}}{1 \text{ K}} = .161 \text{ mol}$$

$$\frac{.700 \text{ K}}{1 \text{ K}} \times \frac{.330 \text{ mol}}{1 \text{ K}} \times \frac{103.894 \text{ g.NkBr}}{1 \text{ mol NuBr}} = \frac{16.57 \text{ g.NgBr}}{16.57 \text{ g.NgBr}}$$
A reagent bottle is labeled 0.450 M K₂CO₃.

a) How many moles of K₂CO₃ are present in 45.6 mL of this solution?

b) How many milliliters of this solution are required to furnish 0.800 mol of K₂CO₃?

c) If 50.0 mL of 0.450 M K₂CO₃ is added to enough water to make 125 mL of a diluted

